

AGAINST ABRASION, CHEMICALS AND HEAT

SILTEX® 36-UH AMORPHOUS SILICA CLOTH

SILTEX® 36-UH is a high performance fabric comprised of amorphous silica fibers woven into strong, flexible fabrics designed for use where severe temperature conditions exist. Manufactured to a finished weight of 36 ounces per square yard, the unique properties of SILTEX® 36-UH make it well suited for protection of personnel and equipment against moderate welding splatter, sparks, grinding of metals, etc. SILTEX® 36-UH is also excellent for use in engineered thermal insulation systems.

AVERAGE PHYSICAL PROPERTIES

Material	96% Amorphous Silica
Construction	Woven fabric, 12 Harness Satin
Weight, oz/sy • g/sm, nominal	36 •1220
Thickness, inches • mm, nominal	.056 • 1.42
Use Limit	
Continuous	1800° F • 982° C
Intermittent	2300° F • 1260° C
Melting Point	3100° F • 1704° C
Tensile Strength, Ibs/in • N/5cm	250 x 150 • 2189 x 1313
Linear Shrinkage, % @ 30 minutes	<12 @ 1800° F • 982° C
Silica Content, %	96 (+/- 1)
Width, inches • meters, nominal	36 • 0.9144 (+/- 5%)
Packaging	50 LY • 45.72 M per roll, standard
	300 LY • 274 M, master roll

SILTEX 36-UH is manufactured in accordance to MIL-C-24576.

Tolerance is +/- 10% unless otherwise stated.

The technical data presented herein are indicative of representative properties and are intended as a specification guide only. No warranties are expressed or implied as application conditions are beyond our control.

Rev.2.10-24.2017